Singularity Hub Daily
AI-Powered Brain Implant Eases Severe Depression With a Zap of Electricity
Sarah hadn’t laughed in five years.
At 36 years old, the avid home cook has struggled with depression since early childhood. She tried the whole range of antidepressant medications and therapy for decades. Nothing worked. One night, five years ago, driving home from work, she had one thought in her mind: this is it. I’m done.
Luckily she made it home safe. And soon she was offered an intriguing new possibility to tackle her symptoms—a little chip, implanted into her brain, that captures the unique neural signals encoding her depression. Once the implant detects those signals, it zaps them away with a brief electrical jolt, like adding noise to an enemy’s digital transmissions to scramble their original message. When that message triggers depression, hijacking neural communications is exactly what we want to do.
Flash forward several years, and Sarah has her depression under control for the first time in her life. Her suicidal thoughts evaporated. After quitting her tech job due to her condition, she’s now back on her feet, enrolled in data analytics classes and taking care of her elderly mother. “For the first time,” she said, “I’m finally laughing.”
Sarah’s recovery is just one case. But it signifies a new era for the technology underlying her stunning improvement. It’s one of the first cases in which a personalized “brain pacemaker” can stealthily tap into, decipher, and alter a person’s mood and introspection based on their own unique electrical brain signatures. And while those implants have achieved stunning medical miracles in other areas—such as allowing people with paralysis to walk again—Sarah’s recovery is some of the strongest evidence yet that a computer chip, in a brain, powered by AI, can fundamentally alter our perception of life. It’s the closest to reading and repairing a troubled mind that we’ve ever gotten.
“We haven’t been able to do this kind of personalized therapy previously in psychiatry,” said study lead Dr. Katherine Scangos at UCSF. “This success in itself is an incredible advancement in our knowledge of the brain function that underlies mental illness.”
Brain Pacemaker
The key to Sarah’s recovery is a brain-machine interface.
Roughly the size of a matchbox, the implant sits inside the brain, silently listening to and decoding its electrical signals. Using those signals, it’s possible to control other parts of the brain or body. Brain implants have given people with lower body paralysis the ability to walk again. They’ve allowed amputees to control robotic hands with just a thought. They’ve opened up a world of sensations, integrating feedback from cyborg-like artificial limbs that transmit signals directly into the brain.
But Sarah’s implant is different.
Sensation and movement are generally controlled by relatively well-defined circuits in the outermost layer of the brain: the cortex. Emotion and mood are also products of our brain’s electrical signals, but they tend to stem from deeper neural networks hidden at the center of the brain. One way to tap into those circuits is called deep brain stimulation (DBS), a method pioneered in the ’80s that’s been used to treat severe Parkinson’s disease and epilepsy, particularly for cases that don’t usually respond to medication.
Sarah’s neural implant takes this route: it listens in on the chatter between neurons deep within the brain to decode mood.
But where is mood in the brain? One particular problem, the authors explained, is that unlike movement, there is no “depression brain region.” Rather, emotions are regulated by intricate, intertwining networks across multiple brain regions. Adding to that complexity is the fact that we’re all neural snowflakes—each of us have uniquely personalized brain network connections.
In other words, zapping my circuit to reduce depression might not work for you. DBS, for example, has previously been studied for treating depression. But despite decades of research, it’s not federally approved due to inconsistent result...